Вы находитесь здесь: Главная > Зоопсихология > Развитие психической деятельности в пренатальном периоде

Развитие психической деятельности в пренатальном периоде

Одна из центральных проблем зоопсихологии – вопрос о врожденных и приобретенных компонентах поведения животного. Этот вопрос тесно соприкасается с изучением онтогенеза поведения. Важно оценить, какие элементы поведения передаются особи по наследству (а значит, генетически закреплены), а какие – приобретаются в ходе индивидуального развития. Над этой проблемой работали многие ученые-зоопсихологи, все они высказывали различные мнения о взаимоотношениях элементов поведения в ходе онтогенеза.

Так, известный английский зоопсихолог К. Ллойд-Морган писал, что «деятельность, являющаяся результатом координирования 10 % первоначально бессвязных движений, есть новый продукт, и этот продукт есть результат усвоения, приобретения, а не наследуется в качестве определенного, координированного действия. Как скульптор создает статую из куска мрамора, так усвоение создает действие из массы данных случайных движений. Приобретается определенное, координированное, реактивное или ответное действие. Но есть известные действия, которые определены с самого дня рождения, которые наследуются готовыми и сочетание или координирование которых тотчас после рождения уже отличается полным совершенством. Определенность и координирование действий в данном случае не индивидуальны, а заимствованы от предков».[15]
Ученый указывает на тот факт, что многие действия животных могут быть совершены ими без дополнительной информации. Например, птенец водоплавающей птицы смело входит в воду в первый раз. Существовало и противоположное мнение, согласно которому на развитие поведения оказывает влияние только один из факторов (внутренний – инстинкт или внешний – научение). Приверженцами механистических взглядов на развитие поведения (без действия внутренних факторов) были Г.Е. Когхилл и Цин Янг Куо, в России – В.М. Боровский. Они считали, что все поведение является результатом только научения, которое происходит у животного, начиная с эмбрионального периода развития. Эта концепция сформировалась в противовес теории об изначальной запрограммированности поведения.
В настоящее время сложилось понимание онтогенеза поведения как совокупности взаимодействующих внешних и внутренних факторов, сочетания безусловно– и условно-рефлекторной деятельности. Л.В. Крушинский предложил термин «унитарная реакция» для обозначения актов поведения, имеющих сходное внешнее выражение при различных способах формирования. В унитарной реакции объединяются условные и безусловные поведенческие элементы. Такие поведенческие акты направлены к «выполнению определенного акта поведения, имеющего разные пути осуществления и в то же время определенный шаблон конечного исполнения».[16]
Таким образом, унитарные реакции направлены на выполнение одиночного действия, которое имеет приспособительное значение. При этом безусловный и условный компоненты могут находиться в различном соотношении.
Онтогенез поведения тесно соприкасается с морфофункциональными изменениями организма, так как врожденные движения являются функцией «рабочих» органов. Зоолог Б.С. Матвеев показал, что в ходе онтогенеза изменяется отношение организма к факторам среды. Это обусловливает различные формы приспособления особей к среде в процессе индивидуального развития. На ранних стадиях онтогенеза адаптации могут привести к изменениям в морфологической (строение организма) и функциональной (функции организма) сферах. При этом в первую очередь изменяются «рабочие» органы, а затем происходят изменения во всем организме.
На ход онтогенеза поведения оказывает влияние степень зрелорождения животного. Данные особенности тесно связаны с историческим развитием вида животных, со средой их обитания и с образом жизни. В зависимости от этого у новорожденных наблюдается разная степень самостоятельности сразу после рождения.
Кроме того, на онтогенез поведения влияют и такие особенности развития животных, как наличие или отсутствие в их жизненном цикле личиночной формы. Зачастую личинка отличается от взрослой особи образом жизни, особенностями передвижения, питания и т. д. Особенно четкие отличия можно наблюдать у беспозвоночных животных, хотя определенные различия отмечаются и у позвоночных. При метаморфозе (превращении личинки во взрослое животное) происходят сложнейшие морфологические и функциональные перестройки организма, которые неизбежно приводят к изменениям в поведении.
К. Фабри предлагает следующую периодизацию онтогенеза поведения:
• ранний постнатальный период;
• ювенильный (игровой) период (выделяется только у животных, которые проявляют игровую активность).
Пренатальный (эмбриональный) период – время развития животного от момента образования эмбриона до рождения (или вылупления из яйца). Поведение животного в этом периоде имеет большое значение для развития поведения в целом. Эмбрионы как позвоночных, так и беспозвоночных животных производят в пренатальном периоде онтогенеза ряд движений («эмбриональные движения»). На данной стадии развития они еще не имеют функционального значения, так как организм не связан в этот период со средой обитания. Однако отмечено, что эмбриональные движения являются своего рода элементами будущих двигательных актов, которые организм осуществляет на более поздних стадиях онтогенеза, – именно тогда эти движения и приобретут адаптационное (приспособительное) значение.
По данным А.Д. Слонима, эмбриональные движения могут оказывать влияние на физиологические процессы, связанные с мышечной деятельностью животного. Они позволяют еще во внутриутробном периоде развития подготовить животное к условиям среды. Такие «тренировочные» движения характерны, например, для детенышей копытных млекопитающих, которые сразу после рождения способны подняться на ноги и быстро передвигаться, следуя за стадом. Способность детенышей осуществлять активную деятельность сразу после рождения определяется двигательными упражнениями в пренатальном периоде. Отмечено, что эмбрионы этих животных совершают движения ногами, напоминающие ходьбу. К моменту рождения у животного складывается хорошая координация всех физиологических функций, включая вегетативные (например, регуляция частоты дыхания).
Формирование поведения определяется сложными и разнообразными морфофункциональными сооношениями. Русский зоолог и морфолог, известный своими работами в области сравнительной анатомии позвоночных, И.И. Шмальгаузен (1884–1963, «Пути и закономерности эволюционного процесса», «Факторы эволюции») выделил так называемые «эргонтические корреляции», т. е. соотношения между органами, обусловленные функциональными зависимостями между ними. Имеются в виду типичные функции органов, например функции печени или сердца животного. Шмальгаузен приводит в качестве примера эргонтических корреляций взаимосвязь развития нервной системы и органов чувств. Если удалить у эмбриона какие-либо органы чувств, то элементы нервной системы, которые получают от них информацию, не развиваются в полной мере.
Советский физиолог П.К. Анохин (1898–1974) обратил внимание на взаимную согласованность морфофункциональных изменений (изменений структуры и функций) в онтогенезе. Он писал: «Развитие функции идет всегда избирательно, фрагментарно в отдельных органах, но всегда в крайней согласованности одного фрагмента с другим и всегда по принципу конечного создания работающей системы».[17]
При изучении эмбрионального развития млекопитающих ученый отметил, что отдельные структуры организма развиваются несинхронно. При этом «в процессе эмбриогенеза идет ускоренное созревание отдельных нервных волокон, которые определяют жизненные функции новорожденного, ибо для его выживания „система отношений“ должна быть полноценной к моменту рождения».[18]
Понятие о значении эмбрионального поведения животных для их поведения во взрослом состоянии относительно. Общие закономерности и направление развития функций организма ограничены исторически сложившимися и генетически фиксированными факторами. Однако на развитие эмбриона и его поведенческие реакции оказывают определенное влияние и условия жизнедеятельности взрослого животного.
Эмбриональное научение. В результате изучения поведения животных в эмбриогенезе было отмечено, что оно может включать в себя фрагменты движений, которые влияют на процесс развития животного. С этим связано понятие «эмбриональное научение». В качестве примера можно рассмотреть работы Цин Янг Куо. Этот ученый изучал развитие поведения у куриных эмбрионов. Он показал, что в процессе эмбриогенеза у животных происходит накопление двигательного «эмбрионального» опыта. Опыт накапливается за счет упражнений зачатков будущих органов. В ходе таких упражнений двигательные функции совершенствуются и получают дальнейшее развитие.
Куо разработал способ, который позволял ему проводить наблюдения за движениями эмбрионов, не нарушая их естественного развития. Ученый делал в скорлупе яйца отверстие, вставлял в него окошко и наблюдал за зародышем. Куо заметил, что куриный эмбрион подвергается воздействию различных факторов как извне, так и возникающих внутри яйца благодаря активности самого эмбриона. Первоначальные движения зародыша пассивны, например движения головы из-за ритмичных сокращений сердца. Первые активные движения эмбрион начинает осуществлять на третий-четвертый день развития. Это движения головы к груди и от нее, которые сопровождаются энергичными открываниями и закрываниями клюва. Некоторые исследователи считают, что таким образом куриный зародыш учится клевательным движениям. На шестые—девятые сутки такие движения заменяются новыми: теперь голова поворачивается из стороны в сторону. Такая смена движений может быть связана с отставанием роста шейной мускулатуры от роста размеров головы, а также с положением головы зародыша по отношению к скорлупе, расположением желточного мешка, сердцебиением и даже движениями пальцев ног.
В результате после вылупления цыпленок обладает рядом поведенческих реакций, которые были выработаны у него в процессе пренатального развития. При этом реакции вырабатываются не на определенный раздражитель, а на целую группу раздражителей, вызывающих одну поведенческую реакцию. Движения отдельных частей организма еще не разработаны, двигается в основном все тело, причем движения очень неэкономичны. Таким образом, согласно выводам Куо для нормального проявления всех поведенческих реакций животное должно пройти процесс научения, а следовательно, врожденного поведения не существует. Имеются лишь определенные наследственные предпосылки формирования поведенческих реакций, но развиваются эти реакции в зависимости от внешних условий.
Врожденный компонент поведения нельзя полностью игнорировать. В процессе филогенеза накапливается грандиозный опыт вида, он и реализуется в онтогенезе конкретной особи за счет научения. Научение необходимо, потому что онтогенез поведения не может идти только в видотипичном направлении. Он должен быть биологически полезным для любого животного и соответствовать условиям его жизнедеятельности.
Некоторые элементы поведения, однако, проявляются у животного без эмбрионального научения. В этом случае исключается возможность совершенствования функции органа путем упражнений, а само движение развивается исключительно за счет реализации врожденной программы. Примером такой реакции, которая не требует научения, является реакция поиска соска у детенышей млекопитающих и последующие сосательные движения.
У незрелорожденных детенышей (например, у детеныша кенгуру) также проявляются врожденные поведенческие реакции. Новорожденный кенгуру находится на стадии развития, которую можно приблизительно соотнести с эмбрионом высшего млекопитающего. Однако новорожденный кенгуренокуже проявляет целый спектр двигательных реакций и способностей к ориентировке. При этом он выполняет целую последовательность врожденных движений, которые всегда производятся одно за другим. Кенгуренок самостоятельно поднимается к сумке матери, заползает в нее, отыскивает сосок, захватывает его губами. Поскольку эмбриональный период у кенгуренка чрезвычайно короток, он не мог научиться даже отдельным актам из этой цепи поведенческих реакций, не говоря обо всей последовательности действий. Есть предположение, что при отыскивании сумки матери детеныш ориентируется на сухость шерсти, по которой он должен ползти. В противоположной стороне шерсть кенгуру, смоченная родовыми водами, влажная. Кенгуренок проявляет отрицательное гидротаксическое поведение. Это поведение не могло сформироваться у него внутри родовых оболочек, поскольку там эмбрион находился во влажной среде.
Существовали предположения, согласно которым все поведение животного является только результатом созревания врожденных элементов поведения. При этом полностью исключается упражнение органов. У данной точки зрения были свои приверженцы, например американский ученый Л. Кармайкл, который считал поведение практически полностью врожденным. Однако в настоящее время врожденные и приобретенные элементы в онтогенезе поведения не противопоставляются, а воспринимаются как взаимосвязанные элементы.
Ниже дается обзор пренатального развития двигательной активности зародышей разных групп животных.
Беспозвоночные. Известно, что зародыши головоногих моллюсков на ранних стадиях эмбриогенеза вращаются внутри яйца вокруг оси со скоростью один оборот в час. Кроме того, они передвигаются между полюсами яйца. Все движения осуществляются с помощью ресничек. Этот способ передвижения широко распространен среди личинок морских беспозвоночных.
К концу эмбриогенеза у беспозвоночных некоторые жизненно важные инстинктивные реакции формируются окончательно. Так, мизиды (ракообразные) к моменту вылупления из яиц уже обладают реакцией уклонения от неблагоприятных воздействий. При этом первоначально у эмбриона наблюдаются рефлекторные «вздрагивания» в ответ на прикосновение к икринке.
У морских козочек (морские ракообразные) с 11-го по 14-й день эмбрионального развития наблюдаются спонтанные и ритмичные движения частей эмбриона. Впоследствии на основе этих движений формируются специфические двигательные реакции.
У взрослой дафнии для плавания служат антенны. Антенны эмбриона начинают двигаться на средних этапах эмбриогенеза. Ближе к его окончанию они поднимаются и принимают положение, необходимое для выполнения плавательных движений, а затем начинают двигаться особенно интенсивно. Таким образом, рефлекторный ответ постепенно формируется на основе движений, обусловленных внутренними процессами, а затем связывается с внешними раздражителями.
Рыбы. Аналогично возникают и двигательные реакции рыб. Они развиваются на эндогенной основе (т. е. зависят от внутренних процессов в организме). Движения рыб развиваются в зависимости от созревания соответствующих нервных связей. После развития органов чувств на поведение зародыша начинают влиять и внешние факторы, которые сочетаются с врожденными движениями.
Ко времени окончания эмбриогенеза у костистых рыб можно отметить дрожание, подергивание отдельных частей тела, змеевидное изгибание тела и вращение. Непосредственно перед вылуплением у рыб появляются своеобразные «клевательные» движения и изгибание туловища, облегчающие выход из яйцевидной оболочки.
Амфибии. Эмбриональное поведение амфибий в общих чертах сходно с поведением зародышами рыб. Вначале появляются изгибательные движения тела, затем на этой эндогенной основе формируются плавательные движения и движения конечностей.
Интересен ход развития жабы Eleutherodactylus martinicensis. Ее личинка развивается внутри яйцевых оболочек, однако выполняет все движения, свойственные головастикам других бес – хвостых амфибий. Вначале у нее появляются общие изгибательные движения тела, затем на их основе формируются плавательные движения. Первоначально они еще соединены с общим изгибанием тела, но через сутки уже можно вызвать одиночные рефлекторные движения конечностей независимо от движений мышц туловища. Позднее в строгой последовательности появляются согласованные движения всех четырех конечностей и развиваются скоординированные плавательные движения. Любопытно и то, что на данном этапе личинка еще ни разу не побывала в водной среде, потому что заключена в яйцевые оболочки.
Для эмбрионов хвостатых амфибий (на примере амбистомы) показано, что они производят плавательные движения задолго до вылупления из икринок. Затем появляются движения ног, типичные для сухопутного передвижения взрослой амбистомы. Л. Кармайкл доказал, что этот механизм созревает без научения. Эмбриона амбистомы вырастили в анестезирующем растворе, зародыш был полностью обездвижен, однако нормально рос и развивался. Эмбриональная тренировка в таких условиях была невозможна, но локомоторные способности выросшей амбистомы были нормально развиты. Это позволило Кармайклу сделать вывод о том, что формирование способности к плаванию зависит только от анатомического развития животного и не нуждается в научении. Этот вывод оспорил польский зоопсихолог Я. Дембовский. Он утверждал, что у подопытных эмбрионов подавлялась возможность накопления двигательного эмбрионального опыта, но соответствующие процессы в нервной системе все равно протекали. Ее функционирование и послужило своего рода упражнением для развития поведения зародыша.
Для доказательства влияния на формирование двигательной активности зародышей внутренних факторов были проделаны опыты на эмбрионах саламандр. Им пересаживали зачатки конечностей, повернутые в обратную сторону. Если бы процесс определялся эмбриональным научением, то в ходе эмбриогенеза произошла бы коррекция, восстановившая способность саламандры к нормальному поступательному движению. Однако вылупившиеся животные пятились от раздражителей, которые у нормальных особей вызывают реакцию движения вперед.
Таким образом, у низших позвоночных формирование в эмбриогенезе локомоторных движений (движений конечностей) происходит не под решающим влиянием внешних факторов, а в результате эндогенного созревания внутренних структур.
Птицы. Материалом для исследования эмбрионального поведения птиц послужили наблюдения за развитием куриных зародышей. Период инкубации у них длится около трех недель, а двигательная активность начинается примерно на четвертый день инкубации. Вначале она представлена движениями переднего конца тела зародыша, постепенно место двигательной активности смещается на задний конец тела. Несколько позднее начинаются спонтанные самостоятельные движения конечностей, головы, клюва, хвоста и глазных яблок.
Выше уже упоминались работы Ц.Я. Куо, который установил значение эмбрионального научения для развития поведения птиц, отрицая врожденный компонент развития. Куо обратил внимание на следующую закономерность: эмбрион проявляет максимальную двигательную активность именно в тот момент времени, когда начинает двигаться амниотическая оболочка зародыша. Ученый предположил, что именно пульсирующие движения амниона определяют момент начала движений зародыша. Р.В. Оппенгейм на основе экспериментов показал, что здесь существует обратная зависимость: движения зародыша определяют движения амниотической оболочки.
Куо указал и на важную роль изменений в окружающей среде для развития эмбрионального поведения. Например, желток с 11-го дня инкубации надвигается на брюшную сторону зародыша, мешая движениям ног, которые становятся как бы зафиксированными в согнутом положении, одна над другой. После рассасывания желтка та нога, которая расположена выше, получает возможность двигаться, однако вторая по-прежнему скована и начинает проявлять активность, лишь после того как первая нога отодвинется. По мнению Куо, это объясняет тот факт, что вылупившийся цыпленок передвигается не прыжками, а шагает, переставляя ноги попеременно.
Исследования развития эмбрионального поведения птиц проводил и В. Гамбургер со своими сотрудниками. Было установлено, что первые эмбриональные движения куриных зародышей вызываются спонтанными внутренними процессами в нервных структурах. На протяжении первых двух или двух с половиной недель развития на движения зародыша не оказывает практически никакого влияния тактильная стимуляция (прикосновения). Иными словами, на первых этапах эмбриогенеза птиц двигательная активность не возникает в ответ на внешние факторы, а вызывается только факторами внутренними. Эти предположения были подтверждены опытами. В первый день инкубации у куриного зародыша перерезали зачатки спинного мозга, таким образом была нарушена целостность нервных структур зародыша. После этой операции у куриного эмбриона наблюдалось рассогласование движений зачатков передних и задних конечностей, которые в норме должны двигаться синхронно. Однако при этом сохранилась ритмичность двигательных актов, а это означает, что процессы двигательной активности в отдельных участках спинного мозга автономны.
На протекание эмбрионального периода у птиц большое влияние оказывает биология конкретного вида. Особенно важно отметить различия между птенцовыми и выводковыми птицами. Если у птенцовых вылупление происходит на ранних стадиях развития, то у выводковых – на поздних стадиях, поэтому при сравнении птенцов одного возраста может оказаться, что у выводковой птицы это еще процесс эмбрионального развития, а у птенцовой – постэмбрионального. У выводковой птицы процессы эмбриогенеза более длительные, формирование морфологических структур и поведения начинается еще в яйце, и к моменту вылупления эти параметры уже практически полностью сформированы. Птенцовая птица вынуждена проходить все эти процессы уже после вылупления.
Млекопитающие. Изучение зародышей млекопитающих затруднено из-за того, что эмбрион развивается в материнской утробе и наблюдения за ним возможны лишь при искусственном извлечении его из организма матери. Такое вмешательство в развитие может отрицательно сказаться как на ходе формирования морфологических структур зародыша, так и на проявлениях двигательной активности.
Эмбриогенез поведения млекопитающих имеет важное отличие от развития поведения зародышей других позвоночных. Двигательная активность у остальных позвоночных (рыб, амфибий, рептилий и птиц) формируется на основе первоначально возникающих общих движений всего зародыша. У млекопитающих же движения конечностей появляются одновременно с такими движениями или раньше. Таким образом, для развития млекопитающих большее значение имеет не эндогенная стимуляция со стороны нервной системы, а раннее развитие в ней чувствительных путей.
Л. Кармайкл наблюдал формирование двигательной активности у зародышей морской свинки и установил следующие закономерности. Первые проявления двигательной активности отмечаются на 28—29-й день после оплодотворения и заключаются в подергивании шейно-плечевого участка тела зародыша. Двигательные реакции достигают максимального развития за несколько дней до родов. У эмбриона формируются адекватные рефлекторные реакции на тактильные раздражители, причем эти реакции могут видоизменяться. Например, однократное прикосновение к участку кожи возле уха вызовет у зародыша рефлекторное подергивание ушной раковины. Если же повторять такие тактильные раздражения многократно, то вначале к месту нанесения раздражения будет приближена конечность, а затем (если продолжать раздражение), начнет двигаться голова и все туловище.
Особенности развития эмбрионов млекопитающих обусловлены и наличием у них плаценты. Благодаря этому органу на развитие зародыша оказывает влияние материнский организм, в первую очередь гуморальным путем (за счет действия биологически активных веществ, прежде всего гормонов). Были проведены эксперименты, в ходе которых на женские зародыши морских свинок воздействовали мужским половым гормоном – тестостероном. Это воздействие привело к изменению у них полового поведения во взрослом состоянии: такие самки проявляли все признаки полового поведения, характерного для самцов морских свинок. Интересно, что воздействие на организм морской свинки тестостероном в постнатальном периоде (после рождения) не оказало такого влияния на их поведение. Таким образом, в эмбриональном периоде половые гормоны влияют на формирование поведения путем воздействия на центральные структуры нервной системы.
Другим примером влияния материнского организма на процесс формирования поведенческих реакций у детенышей млекопитающих могут быть эксперименты с вызыванием состояния стресса у беременных крыс. У таких самок рождались пугливые детеныши, которые проявляли такие особенности поведения независимо от того, какая самка их вскармливала.
Влияние сенсорной стимуляции на двигательную активность эмбриона. Несмотря на то что двигательная активность в эмбриональном периоде может быть вызвана эндогенными процессами (внутренние факторы), большое значение для ее развития имеет и сенсорная стимуляция (воздействие стимулов из внешней среды).
На наличие у зародышей наряду со спонтанными движениями (обусловленными внутренними процессами) рефлекторных движений (в ответ на внешнюю стимуляцию) обратили внимание еще в 1930-х гг. Д.В. Орр и В.Ф. Уиндл. Уже на ранних стадиях эмбриогенеза у куриного зародыша наблюдаются общие движения всего тела в ответ на тактильную стимуляцию. Однако такие реакции проявляются позднее, чем спонтанные. Это связано с тем, что двигательные пути в нервной системе эмбриона формируются раньше сенсорных (чувствительных). Наибольшего развития сенсорная стимуляция достигает на последних стадиях эмбрионального развития. В. Гамбургер объясняет этот факт тем, что в развитие поведения включаются внешние факторы, которые готовят птенцов к нормальному общению с родителями.
Для зародышей птиц большое значение имеет акустический (звуковой) контакт с родительскими особями, который устанавливается непосредственно перед вылуплением. В этот момент начинают функционировать органы слуха и зрения птенца, он может посылать сигналы во внешнюю среду, которые будут восприняты родительскими особями. Одновременно птенец «учится» распознавать голоса родителей, отличать их от других звуковых сигналов. Установлено, что для этого происходит согласование ритма звуковых сигналов родительской особи и невылупившегося птенца. При этом двигательная реакция вылупившихся птенцов на ключевой раздражитель (звуковой сигнал) является врожденной и сочетается с эмбриональным научением. Такое пренатальное распознавание голосов родительских особей отмечается у кайры, гагарки, гусиных, куликов и многих других птиц.
Немецкая исследовательница М. Импековен проводила эксперименты с птенцами чайки. Она показала, что акустические сигналы, которые птенцы издают перед вылуплением, вызывают у родительских особей переход от насиживания к уходу за птенцами. И напротив, родительские особи издают крики, которые стимулируют развитие у птенцов клевательных движений, в том числе и реакцию «попрошайничества» (см. Тема 2. Инстинкт). Таким образом, здесь имеет место пренатальное накопление опыта.

Комментарии закрыты.